Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 427
Filtrar
1.
Malar J ; 23(1): 77, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486288

RESUMO

BACKGROUND: Pyrethroid-based indoor residual spraying (IRS) and long-lasting insecticidal nets (LLINs) have been employed as key vector control measures against malaria in Namibia. However, pyrethroid resistance in Anopheles mosquitoes may compromise the efficacy of these interventions. To address this challenge, the World Health Organization (WHO) recommends the use of piperonyl butoxide (PBO) LLINs in areas where pyrethroid resistance is confirmed to be mediated by mixed function oxidase (MFO). METHODS: This study assessed the susceptibility of Anopheles gambiae sensu lato (s.l.) mosquitoes to WHO tube bioassays with 4% DDT and 0.05% deltamethrin insecticides. Additionally, the study explored the effect of piperonyl butoxide (PBO) synergist by sequentially exposing mosquitoes to deltamethrin (0.05%) alone, PBO (4%) + deltamethrin (0.05%), and PBO alone. The Anopheles mosquitoes were further identified morphologically and molecularly. RESULTS: The findings revealed that An. gambiae sensu stricto (s.s.) (62%) was more prevalent than Anopheles arabiensis (38%). The WHO tube bioassays confirmed resistance to deltamethrin 0.05% in the Oshikoto, Kunene, and Kavango West regions, with mortality rates of 79, 86, and 67%, respectively. In contrast, An. arabiensis displayed resistance to deltamethrin 0.05% in Oshikoto (82% mortality) and reduced susceptibility in Kavango West (96% mortality). Notably, there was reduced susceptibility to DDT 4% in both An. gambiae s.s. and An. arabiensis from the Kavango West region. Subsequently, a subsample from PBO synergist assays in 2020 demonstrated a high proportion of An. arabiensis in Oshana (84.4%) and Oshikoto (73.6%), and 0.42% of Anopheles quadriannulatus in Oshana. Non-amplifiers were also present (15.2% in Oshana; 26.4% in Oshikoto). Deltamethrin resistance with less than 95% mortality, was consistently observed in An. gambiae s.l. populations across all sites in both 2020 and 2021. Following pre-exposure to the PBO synergist, susceptibility to deltamethrin was fully restored with 100.0% mortality at all sites in 2020 and 2021. CONCLUSIONS: Pyrethroid resistance has been identified in An. gambiae s.s. and An. arabiensis in the Kavango West, Kunene, and Oshikoto regions, indicating potential challenges for pyrethroid-based IRS and LLINs. Consequently, the data highlights the promise of pyrethroid-PBO LLINs in addressing resistance issues in the region.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Nitrilas , Piretrinas , Animais , Inseticidas/farmacologia , Butóxido de Piperonila/farmacologia , DDT , Namíbia , Mosquitos Vetores , Piretrinas/farmacologia , Resistência a Inseticidas , Controle de Mosquitos
2.
Parasit Vectors ; 17(1): 103, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431631

RESUMO

BACKGROUND: Increasing metabolic resistance in malaria vector mosquitoes resulted in the development of insecticide-treated nets (ITNs) with active ingredients (AI) that target them. Bioassays that accurately measure the mortality induced by these AIs on ITNs are needed. Mosquito metabolic enzyme expression follows a circadian rhythm. Thus, this study assessed (i) influence of the time of day of mosquito exposure and (ii) timing of assessment of mortality post exposure (24 and 72 h) to ITNs against vectors that are susceptible to pyrethroids and those with metabolic and knockdown resistance mechanisms. METHODS: Two cone bioassay experiments were conducted following World Health Organization (WHO) guidelines. Firstly, on ITNs incorporated with 2 g AI/kg of deltamethrin (DM) alone, or combined with 8 g AI/kg piperonyl butoxide (PBO) synergist, during the day (9:00-14:00 h) and repeated in the evening (18:00-20:00 h). This was followed by a confirmatory experiment during the afternoon (12:00-14:00 h) and repeated in the night (22:00-24:00 h) using mosquitoes unexposed or pre-exposed to PBO for 1 h before exposure to DM ITNs. Each net piece was tested with a minimum of eight cones per time (N = 24). The outcome was mortality after 24 h (M24) or 72 h (M72) of holding. RESULTS: The cone bioassays performed using metabolic resistant mosquitoes during the evening showed significantly lower M24 than those performed in the day for DM: odds ratio (OR) 0.14 [95% confidence interval (CI) 0.06-0.30, p < 0.0001] and DM PBO [OR 0.29 (95% CI 0.18-0.49, p < 0.0001). M72 was higher than M24 for metabolic resistant mosquitoes exposed to DM [OR 1.44 (95% CI 1.09-1.88), p = 0.009] and DM PBO [OR 1.82 (95% CI 1.42-2.34), p < 0.0001]. An influence of hour of experiment and time of assessment was not observed for mosquitoes that had knockdown resistance or that were pyrethroid-susceptible. CONCLUSIONS: Time of day of experiment and hour of assessment of delayed mortality after exposure of mosquitoes are important considerations in evaluating insecticides that interact with mosquito metabolism to counter metabolic resistant mosquitoes. This is important when evaluating field-aged ITNs that may have lower concentrations of AI.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Animais , Inseticidas/farmacologia , Controle de Mosquitos/métodos , Mosquitos Vetores , Piretrinas/farmacologia , Butóxido de Piperonila/farmacologia , Resistência a Inseticidas
3.
Trials ; 25(1): 151, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419075

RESUMO

BACKGROUND: The massive scale-up of long-lasting insecticidal nets (LLIN) has led to a major reduction in malaria burden in many sub-Saharan African (SSA) countries. The World Health Organization (WHO) has recently issued a strong recommendation for the use of chlorfenapyr-pyrethroid LLINs compared to standard pyrethroid-only LLINs in areas of high insecticide resistance intensity. However, there is still a lack of conclusive evidence on the efficacy of piperonyl butoxide-pyrethroid (PBO-py) LLINs, especially in West Africa, where vector composition and resistance mechanisms may be different from vectors in East Africa. METHODS: This is a three-arm, superiority, triple-blinded, cluster randomised trial, with village as the unit of randomisation. This study conducted in Côte d'Ivoire will evaluate the efficacy on epidemiological and entomological outcomes of (1) the control arm: MAGNet® LN, which contains the pyrethroid, alpha-cypermethrin, (2) VEERALIN® LN, a net combining the synergist PBO and alpha-cypermethrin, and (3) Interceptor® G2 LN, which incorporates chlorfenapyr and alpha-cypermethrin, two adulticides with different mechanisms of action. A total of 33 villages with an average of 200 households per village will be identified, mapped, and randomised in a ratio of 1:1:1. Nets will be distributed at a central point following national guidelines with 1 net for every 2 people. The primary outcome of the trial will be incidence of malaria cases (confirmed by rapid diagnostic test (RDT)) in a cohort of 50 children aged 6 months to 10 years in each cluster, followed for 12 months (active case detection). Secondary outcomes are cross-sectional community prevalence of malaria infection (confirmed by RDT) in the study population at 6 and 12 months post-intervention (50 randomly selected persons per cluster), vector density, entomological inoculation rate (EIR), and phenotypic and genotypic insecticide resistance at baseline and 12 months post-intervention in 3 sentinel villages in each treatment arm. DISCUSSION: In addition to generating further evidence for next-generation LLINs, this study will also provide the first evidence for pyrethroid-PBO nets in a West African setting. This could further inform WHO recommendations on the pragmatic use of pyrethroid-PBO nets. TRIAL REGISTRATION: ClinicalTrials.gov NCT05796193. Registered on April 3, 2023.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Criança , Animais , Humanos , Butóxido de Piperonila/farmacologia , Côte d'Ivoire/epidemiologia , Estudos Transversais , Controle de Mosquitos , Mosquitos Vetores , Piretrinas/farmacologia , Inseticidas/efeitos adversos , Resistência a Inseticidas , Malária/epidemiologia , Malária/prevenção & controle
4.
Parasitol Res ; 122(12): 3139-3145, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37921904

RESUMO

Numerous biting and nuisance insects are a noted cause of discomfort and stress to horses. Pyrethrins and pyrethroids have been used for many years in numerous formulations for the control of insect pests in animals, humans and environment. There are, however, few studies reporting their field efficacy in horses. The aim of the present study was to evaluate the repellent activity of a spray formulation based on prallethrin and permethrin synergized with piperonyl butoxide (BRONCO® Equine Fly Spray, Farnam Companies, Inc., USA) against annoying and harmful insects for horses in field conditions. Nine horses of mixed breed were divided into 2 groups (treatment and control). Pre-treatment insect counts were compared to daily counts for 4 days post-treatment (pt). One minute after the administration of the product (day 0), all the horses were negative for the presence of insects. All counts up to the 6-h pt check remained negative for Hippobosca equina, tabanid flies and Simulium spp., showing 100% efficacy. This remained above 90% throughout the study. For the H. equina, the repellent efficacy remained > 99.7% for all 4 days pt, for tabanid flies > 93.3% and for Simulium spp. > 97.4%. The efficacy against Musca spp. decreased from 82.2% at day 0 to 62.2% at day 3. Treatment was well-tolerated. In conclusion, despite the low number of tested horses, Bronco® has demonstrated high insecticide and repellent efficacy and a good persistence, maintained for up to 4 days post-treatment, against the most common species of insects harmful for horses.


Assuntos
Repelentes de Insetos , Inseticidas , Muscidae , Piretrinas , Simuliidae , Humanos , Cavalos , Animais , Permetrina , Butóxido de Piperonila/farmacologia , Piretrinas/farmacologia , Inseticidas/farmacologia , Repelentes de Insetos/farmacologia , Administração Tópica
5.
Am J Trop Med Hyg ; 109(6): 1356-1362, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37871590

RESUMO

Malaria remains a public health priority in Rwanda. The use of insecticide-treated nets (ITNs) is a key malaria prevention tool. However, expanding pyrethroid resistance threatens the gains made in malaria control. In 2018, the Rwandan malaria program strategic approach included the use of newer types of ITNs such as pyrethroid plus piperonyl butoxide (PBO) synergist-treated nets to counter pyrethroid resistance. In February 2020, 5,892,280 ITNs were distributed countrywide; 1,085,517 of these were PBO nets distributed in five districts. This study was a pragmatic observational study that leveraged the 2020 net distribution and routinely collected confirmed malaria cases to determine the impact of PBO nets 1 and 2 years after ITN distribution. No differences were observed in the average net coverage between the PBO and standard net districts. A significant reduction in malaria incidence was reported in both the PBO (P = 0.019) and two control districts that received standard nets (P = 0.008) 1 year after ITN distribution. However, 2 years after, this reduction was sustained only in the PBO (P = 0.013) and not in the standard net districts (P = 0.685). One year after net distribution, all districts had a significant reduction in malaria incidence rate (incidence rate ratio < 1). In the second year, incidence in districts with PBO nets continued to decrease, whereas in districts with standard nets, incidences were similar to predistribution levels. The results indicate that PBO nets are a promising tool to combat pyrethroid resistance in Rwanda, with protective effects of up to 2 years post distribution.


Assuntos
Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Humanos , Piretrinas/farmacologia , Butóxido de Piperonila/farmacologia , Incidência , Ruanda/epidemiologia , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos/métodos
6.
Malar J ; 22(1): 294, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789389

RESUMO

BACKGROUND: After decades of success in reducing malaria through the scale-up of pyrethroid long-lasting insecticidal nets (LLINs), the decline in the malaria burden has stalled, coinciding with the rapid spread of pyrethroid resistance. In a previously reported study, nets treated with a pyrethroid and a synergist, piperonyl butoxide (PBO), demonstrated superior efficacy compared to standard pyrethroid LLINs (std-LLINs) against malaria. Evidence was used to support the public health recommendation of PBO-Pyrethroid-LLIN by the World Health Organization in 2018. This study looks at the third year of rollout of these nets in Muleba district, Tanzania to inform whether policy guidelines need to be updated. METHODS: A four-group cluster randomized trial (CRT) using a two-by-two factorial design was carried out between January 2014 and December 2017. A total of 48 clusters, were randomized in a 1:1:1:1 ratio to the following treatment groups, each intervention being provided once in 2015: 1/std-LLIN; 2/PBO-pyrethroid LLIN; 3/std-LLIN + Indoor Residual Spraying (IRS) and 4/PBO-Pyrethroid-LLIN + IRS. During the third year follow-up, malaria infection prevalence in 80 children per cluster, aged 6 months to 14 years, was measured at 28- and 33-months post-intervention and analysed as intention-to-treat (ITT) and per protocol (PP). Mosquito collections were performed monthly in all clusters, using CDC light traps in 7 randomly selected houses per cluster. RESULTS: At 28 and 33 months, study net usage among household participants was only 47% and 31%, respectively. In ITT analysis, after 28 months malaria infection prevalence among 7471 children was 80.9% in the two std-LLIN groups compared to 69.3% in the two PBO-Pyrethroid-LLIN (Odds Ratio: 0.45, 95% Confidence Interval: 0.21-0.95, p-value: 0.0364). After 33 months the effect was weaker in the ITT analysis (prevalence 59.6% versus 49.9%, OR: 0.60, 95%CI:0.32-1.13, p-value: 0.1131) but still evident in the PP analysis (57.2% versus 44.2%, OR: 0.34, 95%CI: 0.16-0.71, p-value: 0.0051). Mean number of Anopheles per night collected per house was similar between PBO-Pyrethroid-LLIN groups (5.48) and std-LLIN groups (5.24) during the third year. CONCLUSIONS: Despite low usage of PBO- Pyrethroid LLIN, a small impact of those nets on malaria infection prevalence was still observed in the 3rd year with the most protection offered to children still using them. To maximize impact, it is essential that net re-distribution cycles are aligned with this LLIN lifespan to maintain maximum coverage. TRIAL REGISTRATION: The trial was registered with ClinicalTrials.gov (registration number NCT02288637).


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Controle de Mosquitos , Animais , Criança , Humanos , Resistência a Inseticidas , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos/métodos , Butóxido de Piperonila/farmacologia , Piretrinas/farmacologia , Tanzânia/epidemiologia , Lactente , Pré-Escolar , Adolescente
8.
Lancet Planet Health ; 7(8): e673-e683, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37558348

RESUMO

BACKGROUND: Insecticide resistance among malaria-vector species is a pervasive problem that might jeopardise global disease-control efforts. Novel vector-control tools with different modes of action, including long-lasting insecticidal nets (LLINs) incorporating new active ingredients, are urgently needed to delay the evolution and spread of insecticide resistance. We aimed to measure phenotypic and genotypic insecticide-resistance profiles among wild Anopheles collected over 3 years to assess the longitudinal effects of dual-active-ingredient LLINs on insecticide resistance. METHODS: For this analysis, data nested in a 3-year, four parallel-arm, superiority cluster-randomised controlled trial (cRCT) in Tanzania, collected from 84 clusters (39 307 households) formed of 72 villages in the Misungwi district, were used to measure insecticide-resistance profiles among female Anopheles mosquitoes via insecticide-resistance bioassays and quantitative RT-PCR of metabolic-resistance genes. Wild, blood-fed, indoor-resting mosquitoes were collected annually during the rainy seasons from house walls in clusters from all four trial groups. Mosquitoes were morphologically identified as An gambiae sensu lato (SL) or An funestus SL before separate bioassay testing. The primary outcomes were lethal-dose values for α-cypermethrin, permethrin, and piperonyl butoxide pre-exposure plus permethrin-resistance intensity bioassays, mortality 72 h after insecticidal exposure for chlorfenapyr bioassays, fertility reduction 72 h after insecticidal exposure for pyriproxyfen bioassays, and fold change in metabolic-enzyme expression relative to an insecticide-susceptible laboratory strain. All primary outcomes were measured in An funestus SL 1 year, 2 years, and 3 years after LLIN distribution. Primary outcomes were also assessed in An gambiae SL if enough mosquitoes were collected. The cRCT is registered with ClinicalTrials.gov (NCT03554616). FINDINGS: Between May 24, 2019, and Oct 25, 2021, 47 224 female Anopheles were collected for resistance monitoring. In the pyrethroid (PY)-LLIN group, there were significant increases in α-cypermethrin-resistance intensity (year 1 LD50=9·52 vs year 2 76·20, p<0·0001) and permethrin-resistance intensity (year 1 13·27 vs year 2 35·83, p=0·0019) in An funestus SL. In the pyriproxyfen PY-LLIN group, there was similar increase in α-cypermethrin-resistance intensity (year 1 0·71 vs year 2 81·56, p<0·0001) and permethrin-resistance intensity (year 1 5·68 vs year 2 50·14, p<0·0001). In the piperonyl butoxide PY-LLIN group, α-cypermethrin-resistance intensity (year 1 33·26 vs year 3 70·22, p=0·0071) and permethrin-resistance intensity (year 1 47·09 vs year 3 2635·29, p<0·0001) also increased over time. In the chlorfenapyr PY-LLIN group, there were no effects on α-cypermethrin-resistance intensity (year 1 0·42 vs year 3 0·99, p=0·54) or permethrin-resistance intensity (data were not estimable due to nearly 100% mortality). There were also minimal reductions in chlorfenapyr susceptibility. However, in the chlorfenapyr PY-LLIN group, a significant decline in piperonyl-butoxide synergy was seen by year 3 (year 1 0·02 vs year 3 0·26, p=0·020). Highly over-expressed detoxification enzymes showed dynamic patterns of selection throughout the trial. INTERPRETATION: Our phenotypic data supports trial epidemiological findings; chlorfenapyr PY-LLINs provided superior protection from malaria across multiple transmission seasons, with few effects on insecticide-resistance selection. Rapid pyrethroid-resistance intensification in the piperonyl butoxide PY-LLIN group and pre-existing tolerance of pyriproxyfen in vector populations might explain the poorer performance of these two interventions regarding malaria outcomes. Further work is required to elucidate the potential mechanisms driving cross-resistance between pyrethroids and novel active ingredients to better inform the design of pre-emptive resistance-management strategies. FUNDING: UK Department for International Development; UK Medical Research Council; Wellcome Trust; UK Department of Health and Social Care; UK Foreign, Commonwealth and Development Office; and The Bill and Melinda Gates Foundation via the Innovative Vector Control Consortium.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Animais , Feminino , Humanos , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Anopheles/genética , Permetrina/farmacologia , Butóxido de Piperonila/farmacologia , Tanzânia , Malária/prevenção & controle , Mosquitos Vetores , Piretrinas/farmacologia
9.
Malar J ; 22(1): 214, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480030

RESUMO

BACKGROUND: Pyrethroid-chlorfenapyr (CFP) and pyrethroid-piperonyl butoxide (PBO) nets are being scaled across endemic countries to improve control of malaria transmitted by pyrethroid-resistant mosquitoes. CFP is a pro-insecticide requiring activation by mosquito cytochrome P450 monooxygenase enzymes (P450s) while PBO improves pyrethroid potency by inhibiting the action of these enzymes in pyrethroid-resistant mosquitoes. The inhibitory action of PBO against P450s may thus reduce the efficacy of pyrethroid-CFP nets when applied inside the same household as pyrethroid-PBO nets. METHODS: Two experimental hut trials were performed to evaluate the entomological impact of two different types of pyrethroid-CFP ITN (Interceptor® G2, PermaNet® Dual) when applied alone and in combination with pyrethroid-PBO ITNs (DuraNet® Plus, PermaNet® 3.0) against a pyrethroid-resistant vector population in southern Benin. In both trials, all net types were tested as single and double net treatments. Bioassays were also performed to assess the resistance profile of the vector population at the hut site and investigate interactions between CFP and PBO. RESULTS: The vector population was susceptible to CFP but exhibited a high intensity of pyrethroid resistance that was overcame by PBO pre-exposure. Vector mortality was significantly lower in huts with combinations of pyrethroid-CFP nets plus pyrethroid-PBO nets compared to huts with two pyrethroid-CFP nets (74% vs. 85% for Interceptor® G2 and 57% vs. 83% for PermaNet® Dual, p < 0.001). PBO pre-exposure reduced the toxicity of CFP in bottle bioassays suggesting this effect may be partly attributable to antagonism between CFP and PBO. Higher levels of vector mortality were observed in huts with net combinations that included pyrethroid-CFP nets compared to those that did not and highest mortality was achieved when pyrethroid-CFP nets were applied alone as two nets together (83-85%). CONCLUSIONS: This study shows evidence of a reduced performance of pyrethroid-CFP nets when combined with pyrethroid-PBO ITNs compared to when applied alone and higher efficacy with net combinations that included pyrethroid-CFP nets. These findings suggest that in similar contexts, prioritizing distribution of pyrethroid-CFP nets over other net types would maximize vector control impact.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Piretrinas , Animais , Butóxido de Piperonila/farmacologia , Controle de Mosquitos , Mosquitos Vetores , Piretrinas/farmacologia , Inseticidas/farmacologia , Resistência a Inseticidas
10.
Lancet Planet Health ; 7(5): e370-e380, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37164513

RESUMO

BACKGROUND: Gains in malaria control are threatened by widespread pyrethroid resistance in malaria vectors across sub-Saharan Africa. New long-lasting insecticidal nets (LLINs) containing two active ingredients (dual active-ingredient LLINs) have been developed to interrupt transmission in areas of pyrethroid resistance. We aimed to evaluate the effectiveness of three dual active-ingredient LLINs compared with standard pyrethroid LLINs against pyrethroid-resistant malaria vectors in rural Tanzania. METHODS: In this study, we did a secondary analysis of entomological data from a four-group, 3 year, single-blind, cluster-randomised controlled trial carried out between Feb 18, 2019, and Dec 6, 2021. We conducted quarterly indoor mosquito collections using the Centers for Disease Control and Prevention light trap, in eight houses in each of the 84 study clusters in the Misungwi district, northwestern Tanzania. Anopheles vectors were then tested for malaria parasites and identified at species level, to distinguish between sibling species of the Anopheles gambiae and Anopheles funestus groups, using molecular laboratory techniques. The primary outcomes were density of different malaria vector species measured as the number of female Anopheles collected per household per night, the entomological inoculation rate (EIR), an indicator of malaria transmission, and sporozoite rate. Entomological outcomes were assessed on the basis of intention to treat, and the effect of the three dual active-ingredient LLINs was compared with the standard pyrethroid LLINs at household level. FINDINGS: Dual active-ingredient LLINs had the greatest effect on Anopheles funestus sl, the most efficient vector in the study area, with comparatively weak effect on An arabiensis. An funestus density was 3∙1 per house per night in the pyrethroid LLIN group, 1∙2 in the chlorfenapyr pyrethroid LLIN group (adjusted density ratio [aDR]=0∙26, 95% CI 0∙17-0∙14, p<0∙0001), 1∙4 in the piperonyl-butoxide pyrethroid LLIN group (aDR=0∙49, 0∙32-0∙76, p=0∙0012), and 3∙0 in the pyriproxyfen pyrethroid LLIN group (aDR=0∙72, 0∙47-1∙11, p=0∙15). Malaria transmission intensity was also significantly lower in the chlorfenapyr pyrethroid group, with 0∙01 versus 0∙06 infective bites per household per night in the pyrethroid LLIN group (aDR=0∙21, 0∙14-0∙33, p<0∙0001). Ecological niche models indicated that vector-species distribution was stable following LLIN intervention despite the reductions observed in An funestus sl density. INTERPRETATION: Chlorfenapyr pyrethroid LLINs were the most effective intervention against the main malaria vector An funestus sl over 3 years of community use, whereas the effect of piperonyl-butoxide pyrethroid LLIN was sustained for 2 years. The other vector, An arabiensis, was not controlled by any of the dual active-ingredient LLINs. Additional vector control tools and strategies targeted to locally prevalent vector species evading dual active-ingredient LLINs should be deployed to further reduce malaria transmission and achieve elimination. FUNDING: The Department for International Development, UK Medical Research Council, Wellcome Trust, the Department of Health and Social Care, and The Bill & Melinda Gates Foundation via the Innovative Vector Control Consortium.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Estados Unidos , Animais , Feminino , Humanos , Malária/prevenção & controle , Tanzânia , Método Simples-Cego , Controle de Mosquitos/métodos , Mosquitos Vetores , Piretrinas/farmacologia , Butóxido de Piperonila/farmacologia
11.
Vet Parasitol ; 317: 109917, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37001325

RESUMO

Control of flystrike on sheep relies on the use of insecticides. The present study used in vitro assays to examine the potential for increasing the efficacy of synthetic pyrethroids against sheep blowfly larvae using the synergist piperonyl butoxide (PBO). We examined the potency of alpha-cypermethrin (ACP) / PBO combinations against a reference insecticide-susceptible strain (LS) and a field-derived strain showing resistance to dicyclanil and imidacloprid. Co-treatment of the insecticide-susceptible strain with ACP/PBO resulted in increasing levels of synergism as the PBO concentration was increased, with synergism ratios (SRs) of up to 114-fold. Treatment with PBO/ACP combinations at ratios of 20:1 and 5:1 resulted in significant levels of synergism: SRs of 13.5- and 7.6-fold, respectively. However, the levels of synergism were significantly less for the insecticide-resistant strain: SRs of 4.6- and 2.6-fold for the 20:1 and 5:1 ratios, respectively. The resistant strain showed no resistance to ACP when administered alone, however, was 2-fold less sensitive than the LS strain to the toxic effects of PBO alone. This insensitivity to PBO was removed by co-treatment with the P450 inhibitor aminobenzotriazole, suggesting an increased level of P450-mediated metabolism of the PBO in this strain compared to the LS strain, and hence providing a likely explanation for the reduced synergistic efficacy of PBO on ACP toxicity in the resistant strain. While PBO was able to synergise ACP with both of the blowfly strains examined here, the reduced synergistic efficacy observed with the field-derived insecticide-resistant strain lessens the potential usefulness of such a combination for blowfly control in the field.


Assuntos
Dípteros , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Butóxido de Piperonila/farmacologia , Resistência a Inseticidas , Calliphoridae , Sinergistas de Praguicidas/farmacologia , Piretrinas/farmacologia
12.
Cold Spring Harb Protoc ; 2023(7): .pdb.prot108042, 2023 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-36882290

RESUMO

Metabolic detoxification, in which insecticides are metabolized by enzymes, including cytochrome P450s, hydrolases, and glutathione-S-transferases (GSTs), to become more polar and less toxic, is one of the major mechanisms involved in the development of insecticide resistance. Piperonyl butoxide (PBO), S,S,S,-tributylphosphorotrithioate (DEF), and diethyl maleate (DEM) are inhibitors of P450s, hydrolases, and GSTs, respectively, and are frequently used as insecticide synergists in assessing the metabolic mechanisms that may be involved in the detoxification of insecticides and in the development of insecticide resistance. Synergistic assays can be used to identify the detoxification enzyme that leads to resistance to a specific insecticide. Here, we describe the procedures used in synergist studies of insecticides in both mosquito larvae and adults. The synergist is applied at a maximum sublethal concentration, which is the highest concentration that produces no apparent mortality in the experimental population, above which mortality appears. Insecticide synergistic experiments measure (1) the synergism ratio (SR), which is the difference in the levels of toxicity of a specific insecticide to a strain with and without the presence of the synergists; and (2) the synergism resistance ratio (SRR), which compares SR in the resistant strain with SR in a susceptible strain. In effect, SR indicates the levels of specific enzymes involved in the detoxification of insecticide and SRR identifies the detoxification enzymes/mechanisms that may be involved in the insecticide resistance of insects.


Assuntos
Culicidae , Inseticidas , Animais , Inseticidas/farmacologia , Inseticidas/metabolismo , Resistência a Inseticidas , Culicidae/metabolismo , Butóxido de Piperonila/farmacologia , Hidrolases
13.
Parasit Vectors ; 16(1): 57, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747269

RESUMO

BACKGROUND: Head louse infestation is an important public health problem, and expanding resistance to permethrin is a major challenge to its control. The mapping and detection of pyrethroid resistance are essential to the development of appropriate treatments and ensure the effectiveness of current measures. The aim of this study was to present the phenotypic and genotypic basis of permethrin resistance and identify knockdown resistance (kdr) mutations in head louse populations in northwestern Iran. METHODS: Adult head lice were collected from 1059 infested girls in Ardebil, East Azerbaijan, West Azerbaijan and Zanjan Provinces, northwestern Iran. The toxicity of permethrin and the possible synergistic effect of piperonyl butoxide (PBO) on this toxicity were assessed using bioassays. Fragments of voltage-sensitive sodium channels (vssc) and cytochrome b (cytb) genes were amplified and analyzed for the detection of knockdown resistance (kdr) mutations and mitochondrial groups. Moreover, genotypes of the two hot spot regions of the vssc gene were determined by melting curve analysis of amplicons. RESULTS: A total of 1450 adult head lice were collected during 2016-2021. Live lice were exposed to a dose of 1% permethrin for 12 h, and the median lethal time (LT50) and time to achieve 90% mortality (LT90) were determined to be 6 and 14.8 h, respectively. Topical application of 2 and 16 ng permethrin per louse resulted in 25% and 42.11% mortality, respectively. Pre-exposure of samples to 3% piperonyl butoxide had no synergistic effect on the effects of permethrin. Analysis of the 774-bp vssc gene fragment showed the presence of the M815I, T917I and L920F mutations, wild-type and T917I mutation, in 91.6%, 4.2% and 4.2% of samples, respectively. Investigation of the mitochondrial cytb gene demonstrated the predominance of clade B. The frequency of domain II segment 4 (S4)-S5 kdr genotypes in mitochondrial groups was identical, and heterozygotes were present in 93.5% of samples. A significant difference was detected in the frequency of domain IIS1-S3 kdr genotypes, and the frequency of resistant alleles and heterozygotes was higher in clade B than in clade A. CONCLUSIONS: The presence of kdr mutations in the vssc gene and the non-synergist effect of PBO indicate that pyrethroid target site insensitivity is the main resistance mechanism. This phenomenon and the high frequency of resistant alleles necessitate that new pediculosis management programs be developed. Further studies need to be conducted to identify all factors contributing this resistance and to develop alternative pediculicides.


Assuntos
Inseticidas , Infestações por Piolhos , Pediculus , Piretrinas , Animais , Adulto , Feminino , Humanos , Permetrina/farmacologia , Pediculus/genética , Alelos , Butóxido de Piperonila/farmacologia , Irã (Geográfico) , Resistência a Inseticidas/genética , Piretrinas/farmacologia , Inseticidas/farmacologia
14.
Malar J ; 22(1): 30, 2023 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-36707886

RESUMO

BACKGROUND: Mass distributions of long-lasting insecticidal nets (LLINs) have contributed to large reductions in the malaria burden. However, this success is in jeopardy due in part to the increasing pyrethroid-resistant mosquito population as well as low LLINs coverage in various areas because the lifespan of LLINs is often shorter than the interval between replenishment campaigns. New insecticide-treated nets (ITNs) containing pyrethroid and piperonyl-butoxide (PBO) have shown a greater reduction in the incidence of malaria than pyrethroid LLINs in areas with pyrethroid-resistant mosquitoes. However, the durability (attrition, bio-efficacy, physical integrity and chemical retainment) of pyrethroid-PBO ITNs under operational settings has not been fully characterized. This study will measure the durability of pyrethroid-PBO ITNs to assess whether they meet the World Health Organization (WHO) three years of operational performance criteria required to be categorized as "long-lasting". METHODS: A prospective household randomized controlled trial will be conducted simultaneously in Tanzania, India and Côte d'Ivoire to estimate the field durability of three pyrethroid-PBO ITNs (Veeralin®, Tsara® Boost, and Olyset® Plus) compared to a pyrethroid LLIN: MAGNet®. Durability monitoring will be conducted up to 36 months post-distribution and median survival in months will be calculated. The proportion of ITNs: (1) lost (attrition), (2) physical integrity, (3) resistance to damage score, (4) meeting WHO bio-efficacy (≥ 95% knockdown after 1 h or ≥ 80% mortality after 24 h for WHO cone bioassay, or ≥ 90% blood-feeding inhibition or ≥ 80% mortality after 24 h for WHO Tunnel tests) criteria against laboratory-reared resistant and susceptible mosquitoes, and insecticidal persistence over time will be estimated. The non-inferiority of Veeralin® and Tsara® Boost to the first-in-class, Olyset® Plus will additionally be assessed for mortality, and the equivalence of 20 times washed ITNs compared to field aged ITNs will be assessed for mortality and blood-feeding inhibition endpoints in the Ifakara Ambient Chamber Test, Tanzania. CONCLUSION: This will be the first large-scale prospective household randomized controlled trial of pyrethroid-PBO ITNs in three different countries in East Africa, West Africa and South Asia, simultaneously. The study will generate information on the replenishment intervals for PBO nets.


Assuntos
Mosquiteiros Tratados com Inseticida , Malária , Butóxido de Piperonila , Piretrinas , Animais , Humanos , Côte d'Ivoire , Resistência a Inseticidas , Malária/prevenção & controle , Controle de Mosquitos/métodos , Butóxido de Piperonila/farmacologia , Estudos Prospectivos , Piretrinas/farmacologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Tanzânia
15.
Anal Chem ; 95(5): 3108-3118, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36693709

RESUMO

Here, the transcriptomics and metabolomics on a model of exposure to a cocktail of neonicotinoids (Neo) containing seven commercial compounds and a synergist piperonyl butoxide (PBO) were established. The results showed that Neo and PBO disrupted mRNA and metabolite levels in a dose-dependent manner. Neo caused tryptophan pathway-related neurotoxicity, reduced lipolysis, and promoted fat mass accumulation in the liver, while PBO induced an increase in inflammatory factors and damage to intercellular membranes. Co-exposure enhanced Neo-induced liver steatosis, focal necrosis, and oxidative stress by inhibiting oxidative phosphorylation (OXPHOS). Furthermore, diglycerides and metabolic biomarkers demonstrated that the activation of insulin signaling is associated with restricted OXPHOS, which commonly leads to a high risk of non-alcoholic fatty liver disease (NAFLD) and Alzheimer's disease (AD) as the result of over-synthesis of lipids, low energy supply, and high thermogenesis. The study demonstrates that chronic disease can be induced by Neo and the synergist PBO at the molecular level.


Assuntos
Sinergistas de Praguicidas , Butóxido de Piperonila , Butóxido de Piperonila/farmacologia , Sinergistas de Praguicidas/toxicidade , Neonicotinoides , Transcriptoma , Fígado
16.
Lancet Infect Dis ; 23(2): 247-258, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36174592

RESUMO

BACKGROUND: Long-lasting insecticidal nets (LLINs) are the foundation of malaria control but resistance of mosquito vectors to pyrethroids threatens their effectiveness. We embedded a cluster-randomised trial into Uganda's 2017-18 campaign to distribute LLINs. LLINs with piperonyl butoxide (PBO) reduced parasite prevalence more effectively than conventional LLINs (without PBO) for 18 months. Here, we report the final 25-month survey results. METHODS: LLINEUP was a cluster-randomised trial conducted in 48 districts in eastern and western Uganda. 104 health subdistricts (clusters) without ongoing or planned indoor residual spraying with pirimiphos-methyl (Actellic, Basel, Switzerland) were eligible for inclusion in the trial. Clusters were randomly assigned to PBO LLINs (PermaNet 3.0 or Olyset Plus) and conventional LLINs (PermaNet 2.0 or Olyset Net) with proportionate randomisation using STATA version 14.2. LLINs were delivered from March 25, 2017, to March 18, 2018. Between April 23, 2019, and Sept 13, 2019, community surveys were conducted in 50 randomly selected households per cluster; ten households per cluster were randomly selected for entomology surveys. Mosquitoes were collected in the morning from indoor surfaces of households using Prokopack aspirators. Due to COVID-19 restrictions, only 90 of the 104 clusters were surveyed at 25 months. The primary outcome was parasite prevalence by microscopy in children aged 2-10 years, assessed in the as-treated population, determined using the results from the 6-month household survey on the type of LLINs received in each cluster. This trial is registered with ISRCTN, ISRCTN17516395, and is now completed. FINDINGS: In the as-treated analysis, two clusters were excluded (no predominant LLIN received) and four were reassigned; 40 PBO LLIN clusters (30 PermaNet 3.0, ten Olyset Plus) and 48 non-PBO LLIN (36 PermaNet 2.0, 12 Olyset Net) were included. Parasite prevalence was 17·1% (506 of 2958 participants) in the PBO group and 19·8% (701 of 3534) in the non-PBO group (prevalence ratio adjusted for baseline 0·80 [95% CI 0·69-0·93], p=0·0048). Comparing within-treatment group parasite prevalence to baseline, parasite prevalence ratios were lower in the PBO groups at all timepoints, but the difference was greatest at 6 months (PBO LLINs parasite prevalence at baseline 28·8% [1001 of 3472, 95% CI 27·3-30·4] vs at 6 months 12·0% [361 of 3009, 10·9-13·2], prevalence ratio [PR] 0·43 [95% CI 0·36-0·52], p<0·0001; non-PBO LLINs parasite prevalence at baseline 25·4% [1015 of 4004, 24·0-26·7] vs 6 months 14·8% [526 of 3551, 13·7-16·0], PR 0·60 [0·54-0·68], p<0·0001) and 25 months (PBO LLINs parasite prevalence at 25 months 17·1% [506 of 2958, 15·8-18·5], PR 0·63 [95% CI 0·57-0·71], p<0·0001; non-PBO LLINs parasite prevalence at 25 months 19·8% [701 of 3534, 18·5-21·2], PR 0·79 [0·73-0·86], p<0·0001). INTERPRETATION: In Uganda, PBO LLINs outperformed pyrethroid-only LLINs for 25 months. WHO concluded that PBO LLINs are more effective against malaria than non-PBO LLINs when resistance to pyrethroids is high and issued a conditional recommendation suggesting PBO LLINs should be deployed in areas of pyrethroid resistance. FUNDING: The Against Malaria Foundation, UK Department for International Development, Innovative Vector Control Consortium, and Bill and Melinda Gates Foundation.


Assuntos
COVID-19 , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Criança , Animais , Humanos , Inseticidas/farmacologia , Butóxido de Piperonila/farmacologia , Uganda/epidemiologia , Piretrinas/farmacologia , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos/métodos
17.
Sci Rep ; 12(1): 22166, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36550139

RESUMO

To control pyrethroid-resistant malaria vectors, Indoor Residual Spraying (IRS) and Long-Lasting Insecticidal Nets (LLINs) that include additional ingredients to pyrethroid are being developed. Same progress needs to be made to the pyrethroid-treated blankets, which are more compatible with shelter structures found in emergency settings such as displaced populations. In the current study, efficacy of blankets treated with permethrin and piperonyl butoxide (PBO) was evaluated against pyrethroid-resistant Anopheles gambiae sensu stricto. Efficacy was compared with that of Olyset LLIN, Olyset Plus LLIN and untreated blanket in terms of mortality and blood-feeding inhibition against pyrethroid-resistant Anopheles gambiae mosquitoes. The current study indicates that, in emergency shelters such as migrant and refugee camps where LLINs cannot be used, PBO-permethrin blankets may provide protection against resistant mosquitoes if widely used. No side effects related to the use of the treated blankets were reported from the participants. These results need validation in a large-scale field trial to assess the epidemiological impact of the intervention, durability and acceptability of this new vector control strategy for malaria vector control.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Animais , Humanos , Piretrinas/farmacologia , Permetrina/farmacologia , Butóxido de Piperonila/farmacologia , Resistência a Inseticidas , Malária/prevenção & controle , Mosquitos Vetores/fisiologia , Inseticidas/farmacologia , Controle de Mosquitos/métodos
18.
Am J Trop Med Hyg ; 107(4_Suppl): 21-32, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36228916

RESUMO

The Program for Resistance, Immunology, Surveillance, and Modeling of Malaria (PRISM) has been conducting malaria research in Uganda since 2010 to improve the understanding of the disease and measure the impact of population-level control interventions in the country. Here, we will summarize key research findings from a series of studies addressing routine health facility-based surveillance, comprehensive cohort studies, studies of the molecular epidemiology, and transmission of malaria, evaluation of antimalarial drug efficacy, and resistance across the country, and assessments of insecticide resistance. Among our key findings are the following. First, we found that in historically high transmission areas of Uganda, a combination of universal distribution of long-lasting insecticidal-treated nets (LLINs) and sustained indoor residual spraying (IRS) of insecticides lowered the malaria burden greatly, but marked resurgences occurred if IRS was discontinued. Second, submicroscopic infections are common and key drivers of malaria transmission, especially in school-age children (5-15 years). Third, markers of drug resistance have changed over time, with new concerning emergence of markers predicting resistance to artemisinin antimalarials. Fourth, insecticide resistance monitoring has demonstrated high levels of resistance to pyrethroids, appreciable impact of the synergist piperonyl butoxide to pyrethroid susceptibility, emerging resistance to carbamates, and complete susceptibility of malaria vectors to organophosphates, which could have important implications for vector control interventions. Overall, PRISM has yielded a wealth of information informing researchers and policy-makers on the malaria burden and opportunities for improved malaria control and eventual elimination in Uganda. Continued studies concerning all the types of surveillance discussed above are ongoing.


Assuntos
Antimaláricos , Artemisininas , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Adolescente , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Carbamatos/farmacologia , Criança , Pré-Escolar , Humanos , Resistência a Inseticidas , Inseticidas/farmacologia , Inseticidas/uso terapêutico , Malária/tratamento farmacológico , Malária/epidemiologia , Malária/prevenção & controle , Controle de Mosquitos , Mosquitos Vetores , Organofosfatos/farmacologia , Butóxido de Piperonila/farmacologia , Piretrinas/farmacologia , Uganda/epidemiologia
19.
J Agric Food Chem ; 70(38): 12074-12084, 2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36122177

RESUMO

As one of the sources of biodiesel, microalgae are expected to solve petroleum shortage. In this study, different concentrations of piperonyl butoxide were added to the culture medium to investigate their effects on the growth, pigment content, lipid accumulation, and content of carotenoids in Dunaliella tertiolecta. The results showed that piperonyl butoxide addition significantly decreased the biomass, chlorophyll content, and total carotenoid content but hugely increased the lipid accumulation. With the treatment of 150 ppm piperonyl butoxide combined with 8000 Lux light intensity, the final lipid accumulation and single-cell lipid content were further increased by 21.79 and 76.42% compared to those of the control, respectively. The lipid accumulation in D. tertiolecta is probably related to the increased expression of DtMFPα in D. tertiolecta under the action of piperonyl butoxide. The phylogenetic trees of D. tertiolecta and other oil-rich plants were constructed by multiple sequence alignment of DtMFPα, demonstrating their evolutionary relationship, and the tertiary structure of DtMFPα was predicted. In conclusion, piperonyl butoxide has a significant effect on lipid accumulation in D. tertiolecta, which provides valuable insights into chemical inducers to enhance biodiesel production in microalgae to solve the problem of diesel shortage.


Assuntos
Clorofíceas , Microalgas , Petróleo , Biocombustíveis , Carotenoides/metabolismo , Clorofíceas/metabolismo , Clorofila/metabolismo , Lipídeos , Microalgas/química , Petróleo/metabolismo , Filogenia , Butóxido de Piperonila/metabolismo , Butóxido de Piperonila/farmacologia
20.
Pestic Biochem Physiol ; 187: 105211, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36127055

RESUMO

Penoxsulam is an important herbicide for the control of Echinochloa crus-galli (L.) P. Beauv. Two resistant populations 17GA (R1) and 16NXB (R2) showed 17- and 3-fold resistance to penoxsulam, respectively. A known resistance mutation of Trp-574-Leu in ALS gene and enhanced rates of penoxsulam metabolism likely involving GST contribute to penoxsulam resistance in R1 population. This population had resistance to the ALS-inhibitors pyribenzoxim and bispyribac­sodium and the auxin herbicide quinclorac, but was susceptible to ACCase-inhibitors quizalofop-p-ethyl and cyhalofop-butyl. No known mutations in the ALS gene conferring target site resistance to ALS-inhibiting herbicides were presented in R2 population. However, penoxsulam metabolism in R2 plants was about 4-fold greater than in susceptible population 14YC (S0) plants. The enzyme inhibitors piperonyl butoxide, malathion and 4-chloro-7-nitrobenzoxadiazole reversed penoxsulam resistance in this population. GST and P450 enzyme activities and the genes of GST1-1, GST1-2, GST1-3, CYP81A18, CYP81A12, CYP81A21 were increased significantly in R2 population. These results indicate that multiple resistance mechanisms had occurred in E. crus-galli populations in central China and resistance needs to be managed effectively by diverse chemical and non-chemical methods.


Assuntos
Echinochloa , Herbicidas , Sistema Enzimático do Citocromo P-450/metabolismo , Inibidores Enzimáticos/farmacologia , Resistência a Herbicidas/genética , Herbicidas/metabolismo , Herbicidas/farmacologia , Ácidos Indolacéticos/metabolismo , Malation/farmacologia , Butóxido de Piperonila/farmacologia , Sulfonamidas , Uridina/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...